Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230111.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230111-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230111.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230111.tar.gz
Algorithm Hash digest
SHA256 83ec9baa4163ab8460d6ecbec6ec0ae0e07ed33b630fcd646845a6531b33eb37
MD5 f5134ff27f6bdc2565531a461d544f39
BLAKE2b-256 043f6ac32bbd686bcb3823fef03ad5193900d0e216cfc5e6324fac86ea0c84e0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230111-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230111-py3-none-any.whl
Algorithm Hash digest
SHA256 e1a1e23f69627c8f1df921eb0fc43dfca85ad5a6042ba7b57f6cc2fc8d22f759
MD5 85e1c8b09015c464151fd9c8cf1e21e1
BLAKE2b-256 f9da48379b24c2ad32fae5b68af127b94ee59b7b1f5beebb224cc76d22fb3945

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page