Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230112.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230112-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230112.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230112.tar.gz
Algorithm Hash digest
SHA256 b1b7af3187abe0b78a468504537520b3a2ad4ca87556b2582fe75f7c3ca331c5
MD5 8ed5712f321f241687888ffbdef9087b
BLAKE2b-256 c8efc76a026503c862a748bfaca7807a0d4312b743946b68f7312d3c88c10e55

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230112-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230112-py3-none-any.whl
Algorithm Hash digest
SHA256 26fbd60ee6ea18f5f3de2809825fe97988edb2a20194273c354691926ead4a49
MD5 f7bcf01561d500e77c258f8167f85874
BLAKE2b-256 dfe25f3b3a718f4c86c976626f6c8748b8203a41af45f892bbbc23d47d4b4289

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page