Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230113.tar.gz (36.1 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230113-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230113.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230113.tar.gz
Algorithm Hash digest
SHA256 cb5b58bea10e33d885b09c13fcd3b889d6be3cabcf13180878f25a8c5d79f23b
MD5 8b3874e67527d26fd685455ea18df662
BLAKE2b-256 fd70f885976039692725976e3acb7e5fe6cc807e82b3d7353e9d2fdc6a98d18e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230113-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230113-py3-none-any.whl
Algorithm Hash digest
SHA256 13d831e24439bc3bb6614e6b79dacdc81f394eb9fcc9b0c6734fd23f04ad6491
MD5 99491b4d225339a96e4a1a08341f779c
BLAKE2b-256 03c47f910af6316c92944f0195b6c482495366a97366ee640b6273f861da415c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page