Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230115.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230115-py3-none-any.whl (48.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230115.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230115.tar.gz
Algorithm Hash digest
SHA256 d076a77610a9906c92f50e751d2a7b2d67168b0fd61ae232fec6621521c59765
MD5 85ada53fcfdc1c403190227d148ae977
BLAKE2b-256 8c4abff50132ef1a28dc568b72e03dbc13eeb8a1a341e8721e32f731c824b532

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230115-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230115-py3-none-any.whl
Algorithm Hash digest
SHA256 cfb5ea3f0937d1a2f8790798301cbd21adecc1e4c7bebab7d3fa1a6432250ecd
MD5 9b8a9bbeb576a118f7ebbc7c3d0134a9
BLAKE2b-256 822513a83992970ab963f879c3aa8938b9a9b3cd544e6681ec33a69afbd5692b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page