Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230116.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230116-py3-none-any.whl (48.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230116.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230116.tar.gz
Algorithm Hash digest
SHA256 f028a13530025f7ad955e48f573c8ae32e364ad59263b9c55b3a53fce75940e8
MD5 7a35b61f560cb0ccfbb264acf51cb87c
BLAKE2b-256 63f585be8e701c10c5d74a0e88ed35d10fc91a616115f83c9351be3a0cdc298f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230116-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230116-py3-none-any.whl
Algorithm Hash digest
SHA256 cf71b6c66cc739af2b3c52634480331bb349899d76acb1d0ebb4e3f880274da5
MD5 b8c7077d112a86b0a48570f887330e6d
BLAKE2b-256 68dd3c89c5b711043fec1bea558349c49e744e4ea29228810873d2cc6cb9ab8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page