Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230117.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230117-py3-none-any.whl (48.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230117.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230117.tar.gz
Algorithm Hash digest
SHA256 3b97f6311bef93d3d95b68d402e194a836a28d1997f985235672a8b31c352f8b
MD5 985654ad945234d2db13ad6993247516
BLAKE2b-256 2c2271421ec974a6a3d3cb59be7b4093eeae573e9226e6daf5dbd306d12ba5e2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230117-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230117-py3-none-any.whl
Algorithm Hash digest
SHA256 df05acae44593adbdf47443fb98ee18a9718f1df50f5625c6ceca03dbb71c12d
MD5 5e02d693a9a24ee3903aed62d0ab220d
BLAKE2b-256 51dd507eb9d5ce43fb012beccc9ba48f3363cf5b130598c912ea12fed1cccf94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page