Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230118.tar.gz (37.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230118-py3-none-any.whl (49.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230118.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230118.tar.gz
Algorithm Hash digest
SHA256 15348c017c29b0dd13da725cf0f579fbc09b41cbab7e24f54e77419d86a835b5
MD5 724d59c22880d7e3c9539f8371f06fec
BLAKE2b-256 3291ffc4635a6f0c23a2afb72268d28b32ecc90df4df610526ff4836bafe0584

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230118-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230118-py3-none-any.whl
Algorithm Hash digest
SHA256 3ba488328bb9debe30036fe3d963527768c2d9a87ec168bb367c8b71378a305a
MD5 7e616db7ee86b3d5f2c2984c4d89c230
BLAKE2b-256 7d7f0755bb7bff234b3c115b57b299bf59e847c1497336cae558d5621d91e669

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page