Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230119.tar.gz (36.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230119-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230119.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230119.tar.gz
Algorithm Hash digest
SHA256 318b62c1471e4e79c35de6f385ae6e7bc141f31d7c36d4d3206168565335b405
MD5 788c1f61ef2c66ca6041c45f4c44e220
BLAKE2b-256 9fe46077a8477bb7d727f3a6277bf8c5503f12623b6da2c6b702628730c397cd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230119-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230119-py3-none-any.whl
Algorithm Hash digest
SHA256 a6353055a4d6da4afdf104c8ced934e50094caa333d436bdd9c9eb1e7bb0971e
MD5 94d13a7e5c75720ee1e55bf93e2500c7
BLAKE2b-256 6ab82562d34beec55910f5622455a4d1649436347bd1dd4c5bc787d29534536f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page