Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230121.tar.gz (36.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230121-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230121.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230121.tar.gz
Algorithm Hash digest
SHA256 b2960257363a96681aee0e06dd1c3018289b0ada60e493433d4d28a0ed2b9985
MD5 4249578fefe1eda2f230e82e38c99330
BLAKE2b-256 c3bfe202317e6356a03c7debe0ee96b13ab04fe3a19834eb77c763e919f1554b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230121-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230121-py3-none-any.whl
Algorithm Hash digest
SHA256 84e5b613adbc6ba1311d8c33cd9e325499a19bc0e2b67d2d2255da2e43775272
MD5 ab797aafbc8dd9f73ad73da982e78462
BLAKE2b-256 79a89aab245ff389ed0bef398b9f711a1c612e6aaad94b776440130f65582547

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page