Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230122.tar.gz (36.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230122-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230122.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230122.tar.gz
Algorithm Hash digest
SHA256 0b4b4a3b3aed06a2fba901b6d03f4ce7a4feaa89a1110d4333191684c0b5e8ad
MD5 556cacf87f30e31840e424f0952727ce
BLAKE2b-256 515b6a352176820324fda0a464719058e5c4b67f121f3d10c40b7b68889929cc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230122-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230122-py3-none-any.whl
Algorithm Hash digest
SHA256 3907ee07810935ebcc3fa393e36ff6f103ff2e1364274908908b1a2a0813d497
MD5 33eee95e6019bbc96d310222cf04c76d
BLAKE2b-256 606a10a86e6dfb70860137ad788e95c2022c2b515cd41b953c071e4b2f6b1e61

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page