Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230123.tar.gz (36.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230123-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230123.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230123.tar.gz
Algorithm Hash digest
SHA256 c49f84ca3455455c43c91061dcdae19b3401b3eee1769d6d32e1eba9bad925c5
MD5 e4fd979a71e95a250ea0d491875910b2
BLAKE2b-256 1d0eac9f6059833d070116a226d7012bcacb565971ffd5bc1eb7768dcdb2e13a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230123-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230123-py3-none-any.whl
Algorithm Hash digest
SHA256 4e76cd3682059025f478bc5715cd08d4906147507db73cec0359f94fa83e6753
MD5 1ceae7db375e2415e562dd111287d88c
BLAKE2b-256 0fa3b4e7cc5be51ad6750bdb6969f8ccd92cc780c2f30ac099bf1f7350de8bd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page