Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230124.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230124-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230124.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230124.tar.gz
Algorithm Hash digest
SHA256 770aea2019dedaaaf32b094d31b012e1023af401121225b05e5491f530f09a50
MD5 9e33ef170c6a5ed343d3f3b6cd3328a4
BLAKE2b-256 7a101a670bb6dc93c6927f9a6ec2523cfb98b8c86366985602fa88b5ae77d8ba

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230124-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230124-py3-none-any.whl
Algorithm Hash digest
SHA256 e73c11d157dd0a09a3a2c6e2bccff480395b2a5b2f723788c3e4c6069df348d4
MD5 aff649b288e35f4aafc19ee8ae3e19bb
BLAKE2b-256 cf5ebbe86d9154d8a078f1fa0894e36156c75f8a8294e01a808c6b79a77676be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page