Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230125.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230125-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230125.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230125.tar.gz
Algorithm Hash digest
SHA256 d7c4d71c20df155a53dab65333b1bb443233353d9bf83017f8757a54094b9c64
MD5 7aa49f554ea3b475ba402f583522053d
BLAKE2b-256 851d3ebd3b71085139a9ad2379bdd82b6069a3f447c286707c9f6ee2a7f73514

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230125-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230125-py3-none-any.whl
Algorithm Hash digest
SHA256 56a69f263960d75d0e92bc8695e07860f9aada9a6dffc7d9cf163d4a40978497
MD5 db55b9ab966eaa52539c8c43c47c42d0
BLAKE2b-256 10ded78ea46be6050edca21ed1bad221c58d38df9945d5a8fdc99b914a6f75d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page