Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230330.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230330-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230330.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230330.tar.gz
Algorithm Hash digest
SHA256 bf9a2a4dcc214f813cde0a80eb810c85f3bdcb957c4081b271916fc763f6fde4
MD5 43840f8045bdd7e18ed74132be968fe7
BLAKE2b-256 bb2cbc2604340b8761aac6c76ce3fc1c5c8340ab0d10def14b0e4a74bd9329a8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230330-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230330-py3-none-any.whl
Algorithm Hash digest
SHA256 5cdd1c8df7173dc04c3ac02b43c3ab448080fe3f44ed26023b6c49c25a4ed7bf
MD5 899f29b5e79117e9a190ac9f0939fa62
BLAKE2b-256 bd4c6fbfe652ae691de8f9584b37cb8ab933e6e94112fc24de9b0ae6fe4696a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page