Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230331.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230331-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230331.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230331.tar.gz
Algorithm Hash digest
SHA256 7e16c63f43f7d745d56a8dcdbd869ddebaab646884447e15840a9db8e54e6400
MD5 287c25bbab83a8f7e3b5a1004f63701d
BLAKE2b-256 1915ac4e446cf1bb350a0d5d701a28a5e79066d2aa7fc483a47c3155caf5d649

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230331-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230331-py3-none-any.whl
Algorithm Hash digest
SHA256 85f8a5e7e988aeacd5ac526727c33df67c0b6f95c9f62e8e26823facd390af4f
MD5 3e7080693f3dcf50a2180cef9b540224
BLAKE2b-256 0f724a019142ccc33e290eb0ccc6837f30f591f03578c80f77f687bd970bb198

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page