Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230401.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230401-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230401.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230401.tar.gz
Algorithm Hash digest
SHA256 bc6ac5f5883a8c21762aa1c2fbb20cf7a2d70ac941b484e433ab0fc78f4aeae4
MD5 99c864bb83c87977870631da3d6179b9
BLAKE2b-256 2519a4b22a8fd2c6cc738441a2df8907833588552435da515ebb2cee597a56d0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230401-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230401-py3-none-any.whl
Algorithm Hash digest
SHA256 11859a86a916c4bc435c4252d03fbe0169a661c4c78a7285866928cf3d6c7538
MD5 476e1dcc8e6a0de8e403e8abda4f8842
BLAKE2b-256 9de8bc769cfe8bbe11a45da618f888313c33a94f49d72f94f5bc2535c9a85016

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page