Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230402.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230402-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230402.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230402.tar.gz
Algorithm Hash digest
SHA256 3b2dfa1c3910eaa0dd561585d451643910d9821a3286f367974961d3b86dfb74
MD5 c7a7fd4e2f2528f593ed31cb590b3c58
BLAKE2b-256 fa20a0bf9d58d69064ed8393a1dcd9fe2732be11cf9ca09687a2720ad8d66143

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230402-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230402-py3-none-any.whl
Algorithm Hash digest
SHA256 d5d6e447f514ec371b4e7dfeced70c9a9261a4472417c99ea175ff831fa7b6b0
MD5 bf877184ca269c95788493ced96c1c33
BLAKE2b-256 096a18bf095245144d13722eb414d1bd1752ecfc13f2e4ef591199ae81d5e46e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page