Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230403.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230403-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230403.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230403.tar.gz
Algorithm Hash digest
SHA256 3f73c6a724a9d2f82cf579e8c365e2ca536de32a7f19174afed39697882756de
MD5 869df7da3ff032ee1c4d7b308638283e
BLAKE2b-256 8d793ed3f3787673da5c2e5d0a773bd030f8cdd791418c2413a1ec28d4322912

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230403-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230403-py3-none-any.whl
Algorithm Hash digest
SHA256 46c63950bc31e2422d2f833d0b8b7c2639d611c794054b13b34864b6175c90bc
MD5 7e010a8bb680f9de8176c1befa458bd7
BLAKE2b-256 7cad16742dee20779ba2ab8d0881b3eecb9e57557dddb2e2f22cadfa6ac802b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page