Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230503.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230503-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230503.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230503.tar.gz
Algorithm Hash digest
SHA256 a726f142cb99b78f4ffd31517b68fe3fcc97fb8d9099f9102689e502d765aedf
MD5 38b8ec24ea346b0fa30ac847190d03b0
BLAKE2b-256 2a2008eac8c3c998527a8a8cc2c974bc7a9e3822e8c2a1b773fe44ad3822eb45

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230503-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230503-py3-none-any.whl
Algorithm Hash digest
SHA256 08fb49edbdcd13cafbd58a64dc919e152166116c63e734c007c49652e08242d6
MD5 9b8054888769274f385f1a8a731e7d9b
BLAKE2b-256 f5a0c26844b8f67222737c8a9642b109945fe3eb187f1be9870d17c718bfa489

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page