Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230504.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230504-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230504.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230504.tar.gz
Algorithm Hash digest
SHA256 e718e8c0c11a77c906ccc0c9dc927f2ea6542717cde6023f4289ac70f1d2aa0f
MD5 6afa68d4df86fb2ec87cebff7ee1917e
BLAKE2b-256 89ae714c7c1f2a0db3e47c8796463cbb8c1c7a5c20e362a2feef21194e173a28

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230504-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230504-py3-none-any.whl
Algorithm Hash digest
SHA256 d804d28cf414ff23e7718ff3ca6a00d3b9be97eb761659799e1e64e41d5bc7b1
MD5 cd4df21d2def974ff700f7380f10adf3
BLAKE2b-256 431ad2e5c2c0a4a9d726609080c983676ffdd4a1d8e03731202da1a5bc8cc676

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page