Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230505.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230505-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230505.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230505.tar.gz
Algorithm Hash digest
SHA256 8878297f5ecea315f6358cc09772ad3c054e74d009968b236906861ef8c68634
MD5 5d947d902a7955e62f8a544cb227e1de
BLAKE2b-256 cac6f04dbf29d97c0a4cad5c845a7e883be531392ee825f68ad40ffbb24b99d1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230505-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230505-py3-none-any.whl
Algorithm Hash digest
SHA256 07f95bae5415aa6c3a1f35cd997af1a5acf9466279f76c06cb0821dc18b5f9b3
MD5 e8422980080f2f4d912e7b4174cea3e3
BLAKE2b-256 d308b8bb4565fd3dfb279c00e9d80cded669b6f87715326996480beb4aaae24b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page