Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230506.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230506-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230506.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230506.tar.gz
Algorithm Hash digest
SHA256 0290a254ec2fe6c008a4949c63cfd1223029dfcb14a0e0d23b7aeefe87db82c8
MD5 6cce073b99deabafd9132333935c821f
BLAKE2b-256 c4dc4623bc44a189159f7c6070f4493589f759043cb8529c08a3df4d03dafa6b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230506-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230506-py3-none-any.whl
Algorithm Hash digest
SHA256 498e24ed165ec83926cefa5de334bf825a8219bfc7da764650b19945361fc497
MD5 3434f5dab0204f8cd2e41e53cd35c261
BLAKE2b-256 981159c9a64e107e0db2aed5bc4b3b7993cd12c752db4459e8cba1a37590f857

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page