Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230507.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230507-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230507.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230507.tar.gz
Algorithm Hash digest
SHA256 c9fedf94a222d750abaff318a3e713ffaa5b6dc9ca8857c42eed561933934776
MD5 3a58a0d71b4a4e961b8173c0a3e784cf
BLAKE2b-256 2aa36cae8cc2bcfe5e9122bd4571f4e47f76e95945a88387734bed94aedc11b4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230507-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230507-py3-none-any.whl
Algorithm Hash digest
SHA256 4716061b2d65bdb3fcd221cd34b23ccefb74db5c23b930e57b69d7e0d142c83e
MD5 72024e96d8b4b5dae1fe1aef8d92f365
BLAKE2b-256 bea8383c313226e446433bb5f7fa6ac44976d957dc6d69fb622d62533e6ea7f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page