Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230508.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230508-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230508.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230508.tar.gz
Algorithm Hash digest
SHA256 01f73402659c2fa2592ebb83ae77c1d6fd0444d5ef6c4520b31769e397588bec
MD5 e9971cb77a17aed38f8b3f0078da30e5
BLAKE2b-256 41e680cba3eb8c725826d5cec18cd1f1769368372e4e08bdf54380ed26daf363

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230508-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230508-py3-none-any.whl
Algorithm Hash digest
SHA256 44980cd78b0e5cbca408c5f0a7e407d57fc3cca38f91fce7b0077160c4ae3748
MD5 433a7eca1efc26923dfc8f2c04efb159
BLAKE2b-256 0db0b4aeb381cd281668805f79c4e6aee1fdde8789c88ea6b68d33b69ebee681

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page