Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230509.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230509-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230509.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230509.tar.gz
Algorithm Hash digest
SHA256 98afdfd049bfd2fd53b2b505c9a063b453b3f34a5113fd9da824dddfd2352fe5
MD5 98569da407f2d0c2d15620156334da7d
BLAKE2b-256 beadd745c4a48d2065250754642d2973b7c144b0848edbf0dd0e8978098ecf3e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230509-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230509-py3-none-any.whl
Algorithm Hash digest
SHA256 0c4184a7f2d1bdbed3c3c4a8346da2d39bd539a40adc3074bd6d4f8d120d48cb
MD5 d79f0d71779dcc3ccb1970658c390f3b
BLAKE2b-256 22a4929377bbca249345a1781ada13a7ef8ae0ebb27b0061e8c7a374b6d37b0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page