Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230510.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230510-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230510.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230510.tar.gz
Algorithm Hash digest
SHA256 a65b83b5c7f91865fd3d859e3f99952e09d2d3f3a765c9acdfd1da282d452bbd
MD5 ecdd9fcdf6ee40777e3b1f5b98fd9c22
BLAKE2b-256 645a6a3d7d04e473c6257b9f87b37b7c447209f6deb6ff236cddd1d58abe2bdf

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230510-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230510-py3-none-any.whl
Algorithm Hash digest
SHA256 be946343f3a511bac072ead36b12682b6939ae0dbbe3d56b55da31424895c0ae
MD5 955ca58b29e0eaa2b2648a589f6dc1ca
BLAKE2b-256 8f206e907b7a48c291831856af8af96472db5fcc7255c70e6bc65d525395903e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page