Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230511.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230511-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230511.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230511.tar.gz
Algorithm Hash digest
SHA256 51249244550a80b4cba6381ffb22ca5215770bdfa98749b1cfceb06d7b91d47c
MD5 59d1f1099a1969a7645f649b2ca2d27d
BLAKE2b-256 6ac55dc710c87bd36e694eaec55d053db8fbef22f4fafea718b579b27a65e4b6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230511-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230511-py3-none-any.whl
Algorithm Hash digest
SHA256 67f70558b24dc76aec9cfe98f2f6ceb9f19291f82baa67cafe85a0f9522972df
MD5 e211c7fb7194e0d8d2280ad308cdd0f7
BLAKE2b-256 09b3b028a5b87320e0864bbfe3ffc06aad276ef85a7d3af96ad05b4ffbf802ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page