Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230514.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230514-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230514.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230514.tar.gz
Algorithm Hash digest
SHA256 0aff7f7db05b0988e6bd4238abf2597da3fe95760ed5f6329eaf6e942a404165
MD5 154203f6aa06e80a9aaabfb8a73b7f3b
BLAKE2b-256 1af524a98a29a4a8b0177eee42ea827cbfec505b3cf210f0daa36bb79e28dc71

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230514-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230514-py3-none-any.whl
Algorithm Hash digest
SHA256 3b3f5da2bcde79c950d10b23579c0611b50ae02d18c8553e921d93ba9661b419
MD5 ad219d58b8ae85ec759275ff77ddd6ca
BLAKE2b-256 144b761084c5f52f9654ae7b5a682a2cef6ff85dc962f13c6d9206c66b8561d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page