Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230515.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230515-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230515.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230515.tar.gz
Algorithm Hash digest
SHA256 158a8e930a69a5710f2f96eb6387e87986fe124fa1f2f9de818d145ee6dad877
MD5 265e33ee3e0e0da2347dbe1b8932ef2e
BLAKE2b-256 86ee7c37dc316304aee251da188013b99375b041435fa9b59e528a0dd9e7661a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230515-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230515-py3-none-any.whl
Algorithm Hash digest
SHA256 b560c319d4d14dfd02d3cb6f0486e2538a0699fb725e94921dd2f31ac2e2af7f
MD5 fc0367f45c5d10406259ac164c79cc28
BLAKE2b-256 5a9667ebe8ee5784aba5fe79c45a33c81f423cddcf3d00bddd23f564c43d0da3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page