Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230516.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230516-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230516.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230516.tar.gz
Algorithm Hash digest
SHA256 929520c3151cd2c72466a8e420100ef04281a9c9767301e604d0faeda140a56f
MD5 699e4d6f53c054d7e222b3cd390d0086
BLAKE2b-256 4ba2de186ad780d8af1bc6607c62f55bf3208a8aa321607868678a8c2881e455

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230516-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230516-py3-none-any.whl
Algorithm Hash digest
SHA256 2e5a833eec17372a3c3a3591297c1bb208816c1bf2933860307928b0a4ab8d89
MD5 a63170af3e953dac824ae0ee10c53979
BLAKE2b-256 939cff9e3322f94dc781894d2727c31e0c2b5ce8c96b2143c18eac994f946f44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page