Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230517.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230517-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230517.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230517.tar.gz
Algorithm Hash digest
SHA256 0efacb1e59055476b2164d54a35df9fdfde11e9f3f2e1e0d7a935c567bc59752
MD5 c259f9c0d0170f16c61ca0be967880d9
BLAKE2b-256 4f37912298cb879e9b1db8abe7147ccabd523b4ff3c32358731be4bada28c20c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230517-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230517-py3-none-any.whl
Algorithm Hash digest
SHA256 3fc4932a0debd40603a915989387c1a9d264b5903197c477b11f0ff99e51baa5
MD5 08a14616c174e4eff61f49b4744a96a3
BLAKE2b-256 ef1074c16add83c9f31e3c9424ea04c633aa3f3a89dc5196860e06293341a179

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page