Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230518.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230518-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230518.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230518.tar.gz
Algorithm Hash digest
SHA256 1a743b811268f11c7ebf06b5a3352e5eac22448beac07b15b9ba609d640c1d45
MD5 ee52939e9c6c3377345e769cb4620dd8
BLAKE2b-256 1723f01924acd104c78b8f3e207587ce2d15ee945dd3b9607491fd37ce259d8f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230518-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230518-py3-none-any.whl
Algorithm Hash digest
SHA256 91c01167921b3cb37af82338a16e254b7dc83a6660bcb1d8fcfca66ebcf819fd
MD5 6bf6a0f8160f2e66fa22d76e00f5c4a3
BLAKE2b-256 2ef4e5c823f5f2be3eb73361fc77194a1c8f2a84471baedd7da4db645bd2fb15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page