Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230519.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230519-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230519.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230519.tar.gz
Algorithm Hash digest
SHA256 4b6bfac261cf86249753299b26bfee85ef7b001d880d260ff9ec87380463be5d
MD5 27da3bf8bebe62f4d9e5059cef257132
BLAKE2b-256 68717464cc7c740926312169d92290f01772f6a2521bf71e334ec2e72668e873

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230519-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230519-py3-none-any.whl
Algorithm Hash digest
SHA256 d8591ac406224deb95c9db8adb11687da26417b5f8a334eb797cd137e7bfcd3b
MD5 7ec8e9c6f619ec14855d59659ce7ebd3
BLAKE2b-256 8b2fdfb1ff32420dfbab8cd8d4f8895fa6567f61e5bfc25efc52e6ca0415de41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page