Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230521.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230521-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230521.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230521.tar.gz
Algorithm Hash digest
SHA256 819379f701fff86ade14883d734892e1096c74dacdf2369efb9e97930f00b677
MD5 8e07c2e58a1024a1f3d3f2534ef932a3
BLAKE2b-256 32ad83fed6768f0c4a49cf4d6128ea91f0dc5a559f385d93ab108358b8910311

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230521-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230521-py3-none-any.whl
Algorithm Hash digest
SHA256 da32f9aed90f0b9d6f9019791e3623ad5568ae84b0984f23930b8166aabea64f
MD5 5ab50698bcb3b35c5fc85240291ffff4
BLAKE2b-256 22bc32c9d22224510436e5980a3fb2face70218c17f299dcdb3dc8cac29a129a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page