Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230522.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230522-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230522.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230522.tar.gz
Algorithm Hash digest
SHA256 4d736dd730860af509daabfcc15a73f6692e5ccdd49101ef748a747407604d84
MD5 164d36f01c21a8e39ebf4b4180e4281c
BLAKE2b-256 3cbd91c581682cd9b17e9f90c874715e607c2d3de2c1ef904713da8e410bf095

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230522-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230522-py3-none-any.whl
Algorithm Hash digest
SHA256 4af6fc9fa7fa4a1c163a8fb095bdbd0195dd9c84ce9ebb112ec83bd400842aee
MD5 a0b874bb3e20b6c04717d2106eb63c82
BLAKE2b-256 363c0c2e6e6b5b4e87ad0a9d15a79c7479b9317c76415e4dc57b585bbbd82c78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page