Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230523.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230523-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230523.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230523.tar.gz
Algorithm Hash digest
SHA256 7970d83f82160680ddfe12c12f5e68684ff00827ceccfb1995cfb6a3b70c214c
MD5 abaeb47399df5440422e15903ac80ae4
BLAKE2b-256 c8c2245ef0d256aec9621046130c35e98185c5b2f36dba89d8dcab244e142c08

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230523-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230523-py3-none-any.whl
Algorithm Hash digest
SHA256 4db5eb1d07a379bff4a9410647afb11aad325af4f53cc5e911b134dd349d6bc9
MD5 7535968eeb04969f4c9466da856f4381
BLAKE2b-256 9c3435de448a40ba4c18c9260bdeedbd48329879706f93d0c88c9ed104872f85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page