Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230524.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230524-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230524.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230524.tar.gz
Algorithm Hash digest
SHA256 d28e602c0ed0ce93f40ea4a4aa4488e1b774edb3605c1bcc52daa1ce24ebc815
MD5 e1657b09c3268ae1a90edc83e25bac11
BLAKE2b-256 3f00693e083da5441ea6849c59f6f6d3a66d67497ce0b1f6f4a1c033bc0ae4b0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230524-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230524-py3-none-any.whl
Algorithm Hash digest
SHA256 b6092ecddd9e49bd949a945c4175b0b7910d18fd445377d88ec746c8276954d0
MD5 52b4388ee80977d12f61234bd2d1f2b2
BLAKE2b-256 4feabcfc181ab778f0189061ee35fab042b71b5816c0f8c4c1a7ec163d51e977

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page