Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230525.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230525-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230525.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230525.tar.gz
Algorithm Hash digest
SHA256 3c234b483a2da50b53087cb4621b0fd6ccde3b1a4fe7791dd986a64011f01608
MD5 a86e4e17af86ac2f10d595aaff57ffb1
BLAKE2b-256 443da92436c84338f1a1f8aaee11ecf3171b4580d86768b9489593de5b315507

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230525-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230525-py3-none-any.whl
Algorithm Hash digest
SHA256 aa35294773c7d6a5b676dd643c4ace08021c6fc072c7f981c580e89a4be10554
MD5 aaaa8c457598ba4e461dbe9333819a2a
BLAKE2b-256 04fa5d92f42193235a2a37d8b033aeac61a124daa149cf3e49ba33b1bfadf095

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page