Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230526.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230526-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230526.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230526.tar.gz
Algorithm Hash digest
SHA256 4a9f77b0f328fa84027dd3e7770e53ad9ecad4ddb5a77df6f54f36d86aa07792
MD5 1f601deee95b5e02e9188a507ee4621c
BLAKE2b-256 6050f3b7f92db3c97763ede827f547787af10a39aa862b5fc7423cb9d32bbe6a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230526-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230526-py3-none-any.whl
Algorithm Hash digest
SHA256 16202e17c2428ab9f0a3039f0ebd719d29eb8a1affd8d43d39651010b7a55c46
MD5 550e2a7e2a11a68c58b1fff68f651af1
BLAKE2b-256 0db422cfc26cd9c3e1137b412850b33fdcb25913b427f6113eaeb6edebda7914

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page