Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230527.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230527-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230527.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230527.tar.gz
Algorithm Hash digest
SHA256 34d666da3dada7f8867432a009e7ac79cea25f39b2df1975c4efded7f3b7b41c
MD5 bcd0e9b60bc5141107e3a43e9bea3e9d
BLAKE2b-256 3db4d2ad0222a1b33140cb9373b6171fe90b790ab1ad2c8c456fdd789bc2c9d1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230527-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230527-py3-none-any.whl
Algorithm Hash digest
SHA256 705f10aec8c07a325235b1405c3b5bc8f5cd4df14ff40e1de925440d25fe6f44
MD5 209143898b62fad8c31cfad074382bb2
BLAKE2b-256 c5c22bd99ea00e22d5c632307bb375b3810fdec52d19279b3814ef398db257d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page