Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230528.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230528-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230528.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230528.tar.gz
Algorithm Hash digest
SHA256 41fdc8a201a613a3413d0d3774652457f38107ac388c716f3e16bc639e5953b1
MD5 57421a5d6923046228e6c485248c1ae1
BLAKE2b-256 d4f27356ed77b13c9a872f3982681c3b29c99305ae8cde2662a25c80369a829f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230528-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230528-py3-none-any.whl
Algorithm Hash digest
SHA256 7e671318b2f398abd870d3862f9b68e66eb708de761574539cdd039575461c0b
MD5 3acd9348b2e73cacda9682de86451914
BLAKE2b-256 8a5c81fd3dd057da3c86d6dc24afc4696504f73e19ae0822b635ea28b3ac2279

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page