Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230529.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230529-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230529.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230529.tar.gz
Algorithm Hash digest
SHA256 f9580c02bcd905b723c324c9d8f114b8772457c120b3e9a20381ca0e68f0c911
MD5 9b79d0864649c8eb617ce3c2a0c3448f
BLAKE2b-256 148e98f0d307c706f2f7786172eff5232329beb7b57dcc89529d8b106bd4ee54

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230529-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230529-py3-none-any.whl
Algorithm Hash digest
SHA256 8648e1f023e709fd0a02c565118e01d6932185dedba480f69282404f998fd469
MD5 09a3f54b6fb44ec91c209e1b6bbe84ad
BLAKE2b-256 6efe8068df9b097eb6786eff71a9b96d19130129a16746ba3d8f8f6eb88aa4c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page