Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230530.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230530-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230530.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230530.tar.gz
Algorithm Hash digest
SHA256 cf3283745fbdfcca1d29541fb2045872df5d9a72535bc15d231efd3d6bf0e0a6
MD5 349ed2c1e51300578354a55d154107f0
BLAKE2b-256 a789bdaf7d830ca8d5e4ea23154b4f06ef7f251e568885ea3fde69c420fdf409

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230530-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230530-py3-none-any.whl
Algorithm Hash digest
SHA256 b23780cd5a8fc353002a584634acd7bd70bf5a0b2bbb5308feff99ebc9e8637e
MD5 d0db877d7b15e88596fa0cad4da6f80a
BLAKE2b-256 91f51969d622c5932a53b61f4816be60a1a8365098cfc69e82508ab815990226

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page