Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230531.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230531-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230531.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230531.tar.gz
Algorithm Hash digest
SHA256 a2a0b8a15e7ca79db222ae1e530212724c16f864a4550c67149b3bf1cb213336
MD5 0e557f1682bd3f003afbad599edbf19a
BLAKE2b-256 53f3e2e8be53b4290daeec7e98c320e42af558691c928675ff8c7eb385cddddc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230531-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230531-py3-none-any.whl
Algorithm Hash digest
SHA256 c79716e5c5ae242b5e20cf7f72c9ab6c25402c4a503c6721aca1425a358eb0b5
MD5 3e09edcd9f5b4bfed6e863ccca2488aa
BLAKE2b-256 d63f56e37a689631fa87756064bdfe8da63f82f8aa0df47ce06f4518fd2665ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page