Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230601.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230601-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230601.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230601.tar.gz
Algorithm Hash digest
SHA256 e0bf8a06e644bd4cbc2b69f61c109af87bf1904428b57fdb848ecedfdfa32331
MD5 401a1d50e48c2f934909846cf7530295
BLAKE2b-256 7e3657d56db6f6f09f68cdf095eb2111e44a08ea7004b770cbbf61289770e6a8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230601-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230601-py3-none-any.whl
Algorithm Hash digest
SHA256 984c7c9a6f9872e92832ad268f4e26e60e9da1fa9e8625b3ee308a40261ea1b2
MD5 fc9e79ad4475e0edd9acb26855739a4c
BLAKE2b-256 09896685c21dfea8a9e36842940efbd7b8219fc35606e3ab8b06a7199d7b41ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page