Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230602.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230602-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230602.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230602.tar.gz
Algorithm Hash digest
SHA256 ecafad255605edd7890aa8a72c4e636e3b5e0a1e408f2ef1843464c9c9efa4a1
MD5 a8e99f2828a1434a30c94063cd58937b
BLAKE2b-256 f927be10acc6d152d040da11aeda0741f8d9076a6f0967217d653583a79df78f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230602-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230602-py3-none-any.whl
Algorithm Hash digest
SHA256 9ab97d7946ffeaabb9a2110a4104f002e7c91487290a43cd7c2153eaf9291b1d
MD5 bc5e10f5713286cb7470d919c437943f
BLAKE2b-256 e3267a4480d1d0e3477548056fdad2e36cc637299771e25b39d5d3ff8b43158b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page