Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230603.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230603-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230603.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230603.tar.gz
Algorithm Hash digest
SHA256 0e5afb4ebaff61b7b80f667e6a407ef04220b2fa1216aabbdae31517a66645bf
MD5 6834cd12501c582aa72c2f947b3f70f7
BLAKE2b-256 2e8c202b307648ef19bcf8ea9b76237104be25d042223559520864103393ae7b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230603-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230603-py3-none-any.whl
Algorithm Hash digest
SHA256 a2bca127127075359931cbb4316edf18eef45c2feefd094b0cefe154c745c624
MD5 f23d8ae9cd149ffcbfedab8c80cab4d0
BLAKE2b-256 8f1e2a8bba3d7db67279f8187eea2a29431627c70cb3033828c73c1e89dd023d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page