Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230604.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230604-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230604.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230604.tar.gz
Algorithm Hash digest
SHA256 48e25adea7e373d3cdf9496d4c6ab86aec5e7ca041fe58eb31a006fbb8b5cb2d
MD5 dfa4fa11087de23bf46af5f71855151d
BLAKE2b-256 aaaf75ef1590bed2a0c09b97f6f03079abe96024a53836fb55e3298c1d049b7c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230604-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230604-py3-none-any.whl
Algorithm Hash digest
SHA256 1677c607f6206abb3370296cf3356b78882e2d2dd9bcaad4028622436cd576b1
MD5 4988453509e10af162a886eb9876ef39
BLAKE2b-256 0de530f91471068e2dbd0c450b3601ffddd543b2ffa890171048c80d37bcb00f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page