Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230605.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230605-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230605.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230605.tar.gz
Algorithm Hash digest
SHA256 3f1b7957f43cc11ce32aa1ff33444b994df96900303877054c387c2673a4a4d4
MD5 284cc072f1a5f89377277dbb8c015144
BLAKE2b-256 756bf548d9331c0c035cdca5a4a05591d03753547bc60632706be8d744bb5a0e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230605-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230605-py3-none-any.whl
Algorithm Hash digest
SHA256 19eb64689d77e7d14ca42dcbb1204165efcb8209469afdc98d9c45fb3303e984
MD5 98c8d25c0da80c837da48818c9b4179a
BLAKE2b-256 a5e794972ca9bf6e0c61d8a1cf0ebce5858cbe082ef88f2861f3eb67e09a7d6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page