Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230607.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230607-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230607.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230607.tar.gz
Algorithm Hash digest
SHA256 7a6f78319b2d15827141420da2522f138de76bda57350b9564274c51dafac127
MD5 c1c55e1c0119572e5cbf322c1f658206
BLAKE2b-256 4c72120565e93da0724bee6531f20f1d6f146b960f0003670b62f5d8d84b8258

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230607-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230607-py3-none-any.whl
Algorithm Hash digest
SHA256 08ecefd03d3cb42fb0f63530fe461f149ffb4afda53374ff4a4db7521cdd145f
MD5 1ea384ae98861552130008a0c5faed82
BLAKE2b-256 e097db56f26a413f75e2311bfa23f78d5707914a1dc7f68584d7bb2e39680a79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page